Phylogenetic footprinting analysis in the upstream regulatory regions of the Drosophila enhancer of split genes.

نویسندگان

  • Morgan L Maeder
  • Benjamin J Polansky
  • Bryanne E Robson
  • Deborah A Eastman
چکیده

During Drosophila development Suppressor of Hairless [Su(H)]-dependent Notch activation upregulates transcription of the Enhancer of split-Complex [E(spl)-C] genes. Drosophila melanogaster E(spl) genes share common transcription regulators including binding sites for Su(H), proneural, and E(spl) basic-helix-loop-helix (bHLH) proteins. However, the expression patterns of E(spl) genes during development suggest that additional factors are involved. To better understand regulators responsible for these expression patterns, recently available sequence and annotation data for multiple Drosophila genomes were used to compare the E(spl) upstream regulatory regions from more than nine Drosophila species. The mgamma and mbeta regulatory regions are the most conserved of the bHLH genes. Fine analysis of Su(H) sites showed that high-affinity Su(H) paired sites and the Su(H) paired site plus proneural site (SPS + A) architecture are completely conserved in a subset of Drosophila E(spl) genes. The SPS + A module is also present in the upstream regulatory regions of the more ancient mosquito and honeybee E(spl) bHLH genes. Additional transcription factor binding sites were identified upstream of the E(spl) genes and compared between species of Drosophila. Conserved sites provide new understandings about E(spl) regulation during development. Conserved novel sequences found upstream of multiple E(spl) genes may play a role in the expression of these genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura

MOTIVATION To date, computational searches for cis-regulatory modules (CRMs) have relied on two methods. The first, phylogenetic footprinting, has been used to find CRMs in non-coding sequence, but does not directly link DNA sequence with spatio-temporal patterns of expression. The second, based on searches for combinations of transcription factor (TF) binding motifs, has been employed in genom...

متن کامل

Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting.

The functional annotation of the nonprotein-coding DNA of eukaryotic genomes is a problem of central importance. Phylogenetic footprinting methods, which attempt to identify functional regulatory regions by comparing orthologous genomic sequences of evolutionarily related species, have shown promising results. The main advantage of this class of approaches is that they do not require any knowle...

متن کامل

Identification of the binding sites for potential regulatory proteins in the upstream enhancer element of the Drosophila fushi tarazu gene.

With a view to identifying proteins that regulate the expression of the Drosophila ftz gene we have sequenced its enhancer-like upstream element (USE) and determined the binding sites for embryonic nuclear proteins within this region by in vitro DNAaseI footprinting. We find that greater than 50% of this element is bound by nuclear protein. By footprinting and gel-retardation studies in embryon...

متن کامل

Clustering Regulatory Signals by Binary Trees

Application of the phylogenetic footprinting techniques to bacterial genomes generates a large number of potential regulatory sites identified upstream of orthologous genes. The next step of such analysis should be clustering of sites corresponding to one signal, that is, binding sites of one regulator. We describe an algorithm for clustering of regulatory sites and present the results of its t...

متن کامل

Upstream Regulatory Elements, Potential Targets and Expression Patterns of Three Drought Responsive miRNAs in Two Grapevine Cultivars

MicroRNAs (miRNAs), as a group of non-coding small RNAs, play key roles in regulating the growth, development and response of plants to various stresses. In this study, the expression patterns of three drought responsive miRNAs (miR159c, miR160a,b and miR169v) were compared in both drought tolerant (Yaghuti) and drought sensitive (Bidanesefid) grapevine cultivars using qRT-PCR under drought str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 177 3  شماره 

صفحات  -

تاریخ انتشار 2007